
3/28/2021

1

Cookies

East Tennessee State University
Department of Computing

CSCI 1720 – Intermediate Web

First
Understanding Stateful vs. Stateless applications

1

2

3



3/28/2021

2

‘State-ful’ vs. ‘State-less’

The state of an application (or anything else, really) is its condition or 
quality of being at a given moment in time--its state of being

Whether something is stateful or stateless depends on how long the state 
of interaction with it is being recorded and how that information needs to 
be stored

4

‘State-ful’ vs. ‘State-less’

Stateless

A stateless process or application can be understood in isolation

There is no stored knowledge of or reference to past transactions

Each transaction is made as if from scratch for the first time

Stateless applications provide one service or function and use content 
delivery network (CDN), web, or print servers to process these short-term 
requests

5

‘State-ful’ vs. ‘State-less’

Stateless

An example of a stateless transaction would be doing a search online to 
answer a question you’ve thought of

You type your question into a search engine and hit enter

If your transaction is interrupted or closed accidentally, you just start a 
new one

Think of stateless transactions as a vending machine: a single request and 
a response

6

4

5

6



3/28/2021

3

‘State-ful’ vs. ‘State-less’

Stateful

Stateful applications and processes are those that can be returned to 
again and again, like online banking or email

They’re performed with the context of previous transactions and the 
current transaction may be affected by what happened during previous 
transactions

For these reasons, stateful apps use the same servers each time they 
process a request from a user

7

‘State-ful’ vs. ‘State-less’

Stateful

If a stateful transaction is interrupted, the context and history have been 
stored so you can more or less pick up where you left off

Stateful apps track things like window location, setting preferences, and 
recent activity

You can think of stateful transactions as an ongoing periodic conversation 
with the same person

8

‘State-ful’ vs. ‘State-less’

Stateful

The majority of applications we use day to day are stateful, but as 
technology advances, microservices and containers make it easier to 
build and deploy applications in the cloud

9

7

8

9



3/28/2021

4

Now…Cookies
What are they and why should we use them?

Cookies – A Brief History

HTTP, or the Hypertext Transfer Protocol, is a stateless protocol

According to Wikipedia, it’s a stateless protocol because it "does not 
require the HTTP server to retain information or status about each user 
for the duration of multiple requests"

You can still see this today with simple websites – you type in the URL to 
the browser, the browser makes a request to a server somewhere, and 
the server returns the files to render the page and the connection is 
closed

11

Cookies – A Brief History

Now imagine that you need to sign in to a website to see certain content, 
like with LinkedIn

The process is largely the same as the one above, but you're presented 
with a form to enter in your email address and password

You enter that information in and your browser sends it to the server

The server checks your login information, and if everything looks good, it 
sends the data needed to render the page back to your browser

12

10

11

12

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol


3/28/2021

5

Cookies – A Brief History

But if LinkedIn was truly stateless, once you navigate to a different page, 
the server would not remember that you just signed in

It would ask you to enter in your email address and password again, check 
them, then send over the data to render the new page

That would be super frustrating, wouldn't it? A lot of developers thought 
so, too, and found different ways to create stateful sessions on the web

13

The Invention of the HTTP Cookie

Lou Montoulli, a developer at Netscape in the early 90s, had a problem – he 
was developing an online store for another company, MCI, which would store 
the items in each customer's cart on its servers

This meant that people had to create an account first, it was slow, and it took 
up a lot of storage

MCI requested for all of this data to be stored on each customer's own 
computer instead

Also, they wanted everything to work without customers having to sign in first

14

The Invention of the HTTP Cookie

To solve this, Lou turned to an idea that was already pretty well known 
among programmers: the magic cookie

A magic cookie, or just cookie, is a bit of data that's passed between two 
computer programs

They're "magic" because the data in the cookie is often a random key or 
token, and is really just meant for the software using it

Lou took the magic cookie concept and applied it to the online store, and 
later to browsers as a whole

15

13

14

15



3/28/2021

6

The Invention of the HTTP Cookie

Now that you know about their history, let's take a quick look at how 
cookies are used to create stateful sessions on the web

16

How Cookies Work

One way to think of cookies is that they're a bit like the wristbands you 
get when you visit an amusement park

For example, when you sign in to a website, it's like the process of 
entering an amusement park

First you pay for a ticket, then when you enter the park, the staff checks 
your ticket and gives you a wristband

This is like how you sign in – the server checks your username and 
password, creates and stores a session, generates a unique session id, 
and sends back a cookie with the session id

17

How Cookies Work

(Note that the session id is not your password, but is something 
completely separate and generated on the fly)

While you're in the amusement park, you can go on any ride by showing 
your wristband

Similarly, when you make requests to the website you're signed in to, your 
browser sends your cookie with your session id back to the server. The 
server checks for your session using your session id, then returns data for 
your request

Finally, once you leave the amusement park, your wristband no longer 
works – you can't use it to get back into the park or go on more rides

18

16

17

18



3/28/2021

7

How Cookies Work

This is like signing out of a website

Your browser sends your sign out request to the server with your cookie, 
the server removes your session, and lets your browser know to remove 
your session id cookie

If you want to get back into the amusement park, you'd have to buy 
another ticket and get another wristband

In other words, if you want to continue using the website, you'd have to 
sign back in

19

20

How to use Cookies - Limitations

Cookies are quite limited compared to some modern alternatives to 
storing data in the browser like localStorage or 
sessionStorage

Here's a rundown of cookies compared to those other technologies

21

19

20

21



3/28/2021

8

How to use Cookies - Limitations

COOKIES LOCAL STORAGE SESSION STORAGE

Capacity 4KB 10MB 5MB

Accessible from Any window Any window Same tab

Expires Manually set Never On tab close

Storage location
Browser and 

server
Browser only Browser only

Sent with requests Yes No No

22

How to use Cookies - Limitations

Cookies are an older technology, and have a very limited capacity

Still, there's quite a bit you can do with them

And their small size makes it easy for the browser to send cookies with 
each request to the server

It's also worth mentioning that browsers only allow cookies to work from 
one domain for security reasons

23

How to use Cookies - Limitations

So if you sign in to your bank at, say, ally.com, then cookies will only work 
within that domain and its subdomains

For example, your ally.com cookie will work on ally.com, ally.com/about, 
and the subdomain www.ally.com, but not axos.com.

This means that, even if you have accounts and are signed in at both 
ally.com and axos.com, those sites won't be able to read each other's 
cookies

24

22

23

24



3/28/2021

9

How to use Cookies - Limitations

It's important to remember that your cookies are sent with every request 
you make in the browser

This is very convenient, but has some serious security implications 

Just remember that cookies are meant to be openly read and sent, so you 
should never store sensitive information like passwords in them

25

How to Set a Cookie in JavaScript

Cookies are really just strings with key / value pairs

Though you'll probably work with cookies more on the backend, there 
may be times you'll want to set a cookie on the client side

Here's how to set a cookie in vanilla JavaScript:

document.cookie = 'dark_mode=true'

26

How to Set a Cookie in JavaScript

Then when you open the developer console, click "Application" and then 
on the site under "Cookies", you'll see the cookie you just added

27

25

26

27



3/28/2021

10

How to Set a Cookie in JavaScript

If you take a closer look at your cookie, you'll see that its expiration date is 
set to Session

That means the cookie will be destroyed when you close your tab / 
browser

That might be the behavior you want, like for an online store with 
payment information

But if you want your cookie to last longer, you'll need to set an expiration 
date

28

How to set an Expiration Date

// expires 1 week from now

document.cookie = 'dark_mode=true; expires=Fri, 

26 Feb 2021 00:00:00 GMT'

29

Or you could use the max-age attribute with the number of seconds you'd 
like your cookie to last:

// expires 1 week from now

document.cookie = 'dark_mode=true; max-

age=604800';

How to set an Expiration Date

30

28

29

30



3/28/2021

11

How to Update a Cookie in JavaScript

Whether or not your cookie has an expiration date, updating it is easy

Just change the value for your cookie, and the browser will automatically 
pick it up:

// expires 1 week from now

document.cookie = "dark_mode=false; max-

age=604800";

31

How to set the path for a cookie in JavaScript

Sometimes you'll only want your cookie to work with certain parts of your 
website

Depending on how your website is set up, one way to do this is with the 
path attribute

Here's how to make it so a cookie only works on the about page at /about:

document.cookie = 'dark_mode=true; path=/about';

32

How to Set the Path for a Cookie in JavaScript

document.cookie = 'dark_mode=true; path=/about’;

Now your cookie will only work on /about and other nested 
subdirectories like /about/team, but not on /blog

33

31

32

33



3/28/2021

12

How to delete a cookie in JavaScript

To delete a cookie in JavaScript, just set the expires attribute to a date 
that's already passed:

// 1 week earlier

document.cookie = 'dark_mode=true; expires=Sun, 

14 Feb 2021 00:00:00 GMT';

You could also use max-age and pass it a negative value:

// 1 minute earlier

document.cookie = 'dark_mode=true; max-age=-60';

34

Security Concerns with Cookies

In general, cookies are very secure when implemented correctly

Browsers have a lot of built-in limitations that we covered earlier, partly 
due to the age of the technology, but also to improve security

Still, there are a few ways that a bad actor can steal your cookie and use it 
to wreak havoc

35

Man-in-the-middle Attacks

A man-in-the-middle (MitM) attack describes a broad category of attacks 
where an attacker sits between a client and a server and intercepts the 
data going between the two

36

34

35

36



3/28/2021

13

Man-in-the-middle Attacks

This can be done in a lot of ways: 

Gaining access to or listening in on an insecure website
Mimicking a public WiFi router
DNS spoofing
Malware / adware

37

Man-in-the-middle Attacks

38

Man-in-the-middle Attacks

As a developer, you can greatly reduce the chance of a MitM attack by 
ensuring that you enable HTTPS on your server, use an SSL certificate 
from a trusted certificate authority, and ensure your code uses HTTPS 
instead of the insecure HTTP

In terms of cookies, you should add the Secure attribute to your cookies 
so they can only be sent over a secure HTTPS connection:

document.cookie = 'dark_mode=false; Secure';

39

37

38

39



3/28/2021

14

Man-in-the-middle Attacks

The Secure attribute doesn't actually encrypt any data in your cookie – it just 
ensures that the cookie can't be sent over an HTTP connection

However, a bad actor could still possibly intercept and manipulate the cookie

To prevent this from happening, you can also use the HttpOnly parameter:

document.cookie = 'dark_mode=false; Secure; HttpOnly';

40

Cross-Site Scripting (XSS) Attacks

An XSS (cross-site scripting) attack describes a category of attacks when 
a bad actor injects unintended, potentially dangerous code into a website

These attacks are very problematic because they could affect every 
person that visits the site

41

Cross-Site Scripting (XSS) Attacks

42

40

41

42



3/28/2021

15

Cross-Site Scripting (XSS) Attacks

If a site has a comments section and someone is able to include malicious 
code as a comment, it's possible that every person who visits the site and 
reads that comment will be affected

In terms of cookies, if a bad actor pulls off a successful XSS attack on a 
site, they could gain access to session cookies and access the site as 
another signed in user

From there, they may be able to access the other user's settings, buy 
things as that user and have it shipped to another address, and so on

43

Cross-Site Scripting (XSS) Attacks

44

Cross-Site Request Forgery (CSRF) Attacks

A CSRF (cross-site request forgery) attack is when a bad actor tricks a 
person into carrying out an unintended, potentially malicious action

For example, if you're signed into a site and click on a link in a comment, if 
that link is part of a CSRF attack, it may lead to you unintentionally 
changing your sign in details, or even deleting your account

45

43

44

45



3/28/2021

16

Cross-Site Request Forgery (CSRF) Attacks

46

Cross-Site Request Forgery (CSRF) Attacks

While CSRF attacks are somewhat related to XSS attacks, specifically 
reflected XSS attacks where someone inserts malicious code into a site, 
each preys on a different type of trust

According to Wikipedia, while XSS "exploits the trust a user has for a 
particular site, CSRF exploits the trust that a site has in a user's browser."

47

Cross-Site Request Forgery (CSRF) Attacks

48

46

47

48



3/28/2021

17

Cross-Site Request Forgery (CSRF) Attacks

As for cookies, one way to prevent possible CSRF attacks is with the 
SameSite flag:

document.cookie = 'dark_mode=false; Secure; 

HttpOnly; SameSite=Strict';

49

Cross-Site Request Forgery (CSRF) Attacks

There are a few values you can set for SameSite:

Lax: Cookies are not sent for embedded content (images, iframes, etc.) but are 
sent when you click on a link or send a request to the origin the cookie is set for. 
For example, if you're on testing.com and you click on a link to go to 
test.com/about, your browser will send your cookie for test.com with that request

Strict: Cookies are only sent when you click on a link or send a request from the 
origin the cookie is set for. For example, your test.com cookie will only be sent 
while you're in and around test.com, and not coming from other sites like 
testing.com

50

Cross-Site Request Forgery (CSRF) Attacks

There are a few values you can set for SameSite:

None: Cookies will be sent with every request, regardless of context. If 
you set SameSite to None, you must also add the Secure attribute. It's 
better to avoid this value if possible

Major browsers handle SameSite a bit differently. For example, if 
SameSite isn't set on a cookie, Google Chrome sets it to Lax by default

51

49

50

51



3/28/2021

18

Alternatives to Cookies

You might be wondering, if there are so many potential security flaws 
with cookies, why are we still using them? Surely there must be a better 
alternative

These days, you can use either sessionStorage or localStorage
to store information that originally used cookies

For stateful sessions, there's token-based authentication with things like 
JWT (JSON Web Tokens)

52

Alternatives to Cookies

While it may seem like you have to choose between cookie-based or 
token-based authentication, it's possible to use both

For example, you might want use cookie-based authentication when 
someone signs in through the browser, and token-based authentication 
when someone signs in through a phone app

To muddy the waters a bit more, authentication-as-a-service providers 
like Auth0 allow you to do both types of authentication

53

Cookies

Despite all of the issues surrounding them, cookies are such an important 
part of web development that, should they disappear without a 
replacement, many of our favorite web applications would be rendered 
useless

54

52

53

54



3/28/2021

19

Cookie Questions?

55

Sources:

• https://www.redhat.com/en/topics/cloud-native-apps/stateful-vs-stateless

• https://www.freecodecamp.org/news/everything-you-need-to-know-about-cookies-for-web-
development/

• https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

• https://www.youtube.com/watch?v=AwicscsvGLg

• https://www.netsparker.com/blog/web-security/man-in-the-middle-attack-how-avoid/

• https://portswigger.net/web-security/cross-site-scripting

• https://portswigger.net/web-security/csrf

56

Copyrights

•Microsoft, Windows, Excel, Outlook, and PowerPoint are registered trademarks of Microsoft Corporation. 

•IBM, DB2, DB2 Universal Database, System i, System i5, System p, System p5, System x, System z, System z10, System z9, z10, z9, iSeries, pSeries, xSeries, zSeries, eServer, z/VM, z/OS, i5/OS, S/390, OS/390, 
OS/400, AS/400, S/390 Parallel Enterprise Server, PowerVM, Power Architecture, POWER6+, POWER6, POWER5+, POWER5, POWER, OpenPower, PowerPC, BatchPipes, BladeCenter, System Storage, GPFS, 
HACMP, RETAIN, DB2 Connect, RACF, Redbooks, OS/2, Parallel Sysplex, MVS/ESA, AIX, Intelligent Miner, WebSphere, Netfinity, Tivoli and Informix are trademarks or registered trademarks of IBM Corporation.

•Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

•Oracle is a registered trademark of Oracle Corporation. 

•HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C®, World Wide Web Consortium, Massachusetts Institute of Technology.

•Java is a registered trademark of Sun Microsystems, Inc.

•JavaScript is a registered trademark of Sun Microsystems, Inc., used under license for technology invented and implemented by Netscape. 

•SAP, R/3, SAP NetWeaver, Duet, PartnerEdge, ByDesign, SAP Business ByDesign, and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered 
trademarks of SAP AG in Germany and other countries. 

•Business Objects and the Business Objects logo, BusinessObjects, Crystal Reports, Crystal Decisions, Web Intelligence, Xcelsius, and other Business Objects products and services mentioned herein as well as 
their respective logos are trademarks or registered trademarks of Business Objects S.A. in the United States and in other countries. Business Objects is an SAP company.

•ERPsim is a registered copyright of ERPsim Labs, HEC Montreal.

•Other products mentioned in this presentation are trademarks of their respective owners.

Presentation prepared by and copyright of John Ramsey, 
East Tennessee State University, Department of 

Computing . (ramseyjw@etsu.edu)

55

56

57

https://www.youtube.com/watch?v=AwicscsvGLg
https://www.youtube.com/watch?v=AwicscsvGLg
https://www.youtube.com/watch?v=AwicscsvGLg
https://www.youtube.com/watch?v=AwicscsvGLg
https://www.netsparker.com/blog/web-security/man-in-the-middle-attack-how-avoid/
https://portswigger.net/web-security/cross-site-scripting
https://portswigger.net/web-security/csrf
mailto:pittares@etsu.edu

