
East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JSON
CSCI 1720

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JS Objects

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JS Objects

In order to understand JavaScript Object Notation, it’s best to have
at least a basic understanding of JS objects

JSON is a subset of JS objects used to transfer data in a structured,
standardized format

So, what about objects?

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JS Objects

An ‘object’ is one of JavaScript’s supported data types

It is an associative array of key:value pairs

Keys are developer-defined values that describe parts of an object

Values represent information associated with the object that may be
unique to a given instantiation of that object

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JS Objects

For example:
We have an object named ‘Cars’
One of the properties (key:value pairs) is ‘make’
We have two ‘Cars’ objects
The ‘make’ for car1 might be ‘Ford’; for car2 ‘Porsche’
Each of these objects are independent
Each contains the same ‘kind’ of data, but with different values for
that data

https://csci1720.net/lecture/JSON-examples/json1.html

https://csci1720.net/lecture/JSON-examples/json1.html

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JS Objects

For example:

Each contains the same ‘kind’ of data, but with different values for
that data

We can change the ‘make’ of car1 (and probably should) to
‘Chevrolet’

Action is specific to car1; car2 is not affected

We could delete car2, but car1 would still persist

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JS Objects

Data Types

Values assigned to keys can have several data types

Primitives

Arrays

Objects

Arrays of objects

Functions

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JS Objects

Data Types

Primitives

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JS Objects

Data Types

Arrays

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JS Objects

Data Types

Objects

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JS Objects

Data Types

Array of Objects

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JS Objects

Data Types

Functions

In JS, a function can be assigned to a variable, in
general

When it is used in a JS object, it becomes the
equivalent to a Java object method

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JS Objects

Data Types

Functions

Functions (we’ll just call them methods from now
on) serve to access and manipulate object data

We could, for example, create a method that will
return a “person’s” full name, concatenated from
the ‘firstName’ and ‘lastName’ values

https://csci1720.net/lecture/JSON-examples/json4.html

https://csci1720.net/lecture/JSON-examples/json4.html

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JS Objects

Data Types

Functions

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JS Objects

Data Types

Functions

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JS Objects

That’s the basics of JS objects

There are a number of built-in methods associated with all objects

As we’ve seen, we can define custom methods as well

Other examples of object use:

https://csci1720.net/lecture/JSON-examples/json8.html

https://csci1720.net/lecture/JSON-examples/json9.html

So how does this relate to JSON?

Let’s look first at an older technology

https://csci1720.net/lecture/JSON-examples/json8.html
https://csci1720.net/lecture/JSON-examples/json9.html

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

Old School: XML

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

eXtensible Markup Language

XML is an older way of structuring data for sharing

MUCH more verbose than JSON

Makes use of ‘custom’ HTML tags and elements

Compliant with HTML

Platform independent

Still widely used (e.g., RSS feeds)

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XML

https://csci1720.net/lecture/JSON-examples/json7.html

https://csci1720.net/lecture/JSON-examples/json7.html

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

eXtensible Markup Language

If you looked at the last slide and immediately thought, “Ugh.”,
welcome to the club

It is structured and can be parsed as needed

But … Wow

JSON, as we’ll see, is a lot easier

JSON is replacing XML as the language of choice for data structuring
and sharing

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JSON

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JavaScript Object Notation

JSON stands for JavaScript Object Notation

It was designed for human-readable data interchange

It has been extended from the JavaScript scripting language

The filename extension is .json

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JavaScript Object Notation

It is used with JavaScript based applications that include browser
extensions and websites

JSON format is used for serializing and transmitting structured data
over a network connection

It is primarily used to transmit data between a server and web
applications

Web services and APIs use JSON format to provide public data

It can be used with modern programming languages, not just JS

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JavaScript Object Notation

Essentially, JSON is a JS object without methods

The only difference, otherwise, is that keys are enclosed with quotes

Unlike many other times we deal with strings, double quotes are
required for well-formed JSON

Values that are numeric and/or Booleans do not have to be quoted

JSON does not (with one obscure exception) allow comments

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JavaScript Object Notation

Syntax
Considered a subset of JavaScript syntax

Data is represented in name/value pairs

Braces ({ }) hold objects

Each name is followed by : (colon), the name/value pairs are
separated by , (comma)

Square brackets hold arrays and objects within the array are
separated by , (commas)

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JavaScript Object Notation

JSON is easy to read and write

Lightweight text-based (string) interchange format

Language/platform independent

https://csci1720.net/lecture/JSON-examples/json5.html

https://csci1720.net/lecture/JSON-examples/json5.html

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

Example
Note that ‘age’ is defined as a
string instead of an integer

All JSON data is string-based

It’s easy enough to convert
strings to integers or floats as
needed

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JavaScript Object Notation

Data Types

Number Double-precision floating-point format in
JavaScript

String Quoted Unicode with backslash escaping

Boolean true or false

Array Ordered sequence of values

Value String, number, Boolean, null

Object Unordered collection of key:value pairs

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JavaScript Object Notation

stringify & parse

Useful methods with JSON -

JSON.stringify() converts a JS object into JSON format

JSON.parse() converts well-formed text strings into an array of
JSON objects

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JavaScript Object Notation

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JavaScript Object Notation

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

JSON Conclusion

Much of our profession involves efficiently handling data

‘data’ can be in any format

JSON provides a standardized way in which we can structure and share
data

‘standardized’ means that, as long as you conform to the established
standard, anyone can make use of a given data set

You’ll see JSON in other classes at ETSU

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

Asynchronous JS

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

Synchronous JS

In order to understand asynchronous JS, let’s first look at what JS, by
default, is

JS is a synchronous (or single-threaded) environment

 thread === ‘ordered sequence of statements’

 thus,

Runs one (1) statement at a time

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

Synchronous JS
STATEMENT 1

STATEMENT 2

STATEMENT 3

STATEMENT 4

STATEMENT 5

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

Synchronous JS

In the RW, we often need to execute functions that take a little time to
complete

 These are referred to as ‘blocking statements’

 JS doesn’t like to wait

When JS encounters such a function, again by default, it will execute it
and charge on to the next statement without waiting to see if it
finished

This can lead to some wonky behavior/results

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

Synchronous JS
STATEMENT 1

STATEMENT 2

STATEMENT 3

STATEMENT 4

STATEMENT 5

TAKES TIME

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

Synchronous JS
STATEMENT 1

STATEMENT 2

STATEMENT 3

STATEMENT 4

STATEMENT 5

TAKES TIME

TAKES TIME

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

Asynchronous JS

Start something now & finish it later

Network requests:

 Database

 API

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

Synchronous JS
STATEMENT 1

STATEMENT 2

STATEMENT 3

STATEMENT 4

STATEMENT 5

TAKES TIME

CALLBACK

USES ASYNC FUNCTION
HANDLES REQUEST
OUTSIDE OF THE SCOPE
OF THE SINGLE THREAD
IN ANOTHER PART OF THE
BROWSER’S ENVIRONMENT

TAKES A CALLBACK
FUNCTION
AND EXECUTES IT
WHEN THE
DATA COMES BACK

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

Synchronous JS

https://csci1720.net/lecture/video/lecture13-json/003.mp4

All Videos: https://csci1720.net/lecture/video/lecture13-json/index.php

https://csci1720.net/lecture/video/lecture13-json/003.mp4
https://csci1720.net/lecture/video/lecture13-json/index.php

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

Asynchronous JS

https://csci1720.net/lecture/video/lecture13-json/004.mp4

https://csci1720.net/lecture/video/lecture13-json/004.mp4

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

HTTP Requests

Make HTTP requests to get data from another server

We make these requests to API endpoints

 URLs that an API or server exposes to us so that we can obtain
the data

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

API Endpoints

HTTP REQUEST

HTTP RESPONSE

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

https://csci1720.net/lecture/video/lecture13-json/006.mp4

In this example, we’re using an Application Programming Interface
(API), typicode.com

We’ll make a call to typicode, which will return dummy data in JSON
format

Like a database request, an API call takes a little time to complete

https://csci1720.net/lecture/video/lecture13-json/006.mp4

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

Data is typically returned from an API in JSON format

So, to demonstrate asynchronous requests, we’re going to use an API
endpoint at https://jsonplaceholder.typicode.com/todos

To make the request, we have to set up an XMLHttpRequest object, open
it, and send it

https://jsonplaceholder.typicode.com/todos

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

https://csci1720.net/lecture/video/lecture13-json/007.mp4

https://csci1720.net/lecture/video/lecture13-json/007.mp4

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

So, at this point, we’ve made and sent the request and received the
response

But we still don’t know when the request is complete or how to access
that data

We need a little more code

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

We can track the progress of the request using an event listener

Specifically,

 readystatechange

There are four states logged by the readystatechange event

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

https://csci1720.net/lecture/video/lecture13-json/008.mp4

https://csci1720.net/lecture/video/lecture13-json/008.mp4

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

The response, accessible when we reach readyState == 4, is in a property
called responseText

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

So we want to add a check of the readyState

if(request.readyState === 4) {

}

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

https://csci1720.net/lecture/video/lecture13-json/009.mp4

https://csci1720.net/lecture/video/lecture13-json/008.mp4

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

if(request.readyState === 4) {

}

isn’t quite enough

We need to also verify that the response was successful

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

if(request.readyState === 4 &&

 request.status == 200) {

} else if(request.readyState === 4) {

 console.log('Could not fetch data');

}

So if the request finishes with an error, we’ll log an error message to the
console

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

THIS ACTUALLY SHOULD BE 200, NOT '200'. OOPS

https://csci1720.net/lecture/video/lecture13-json/010.mp4

https://csci1720.net/lecture/video/lecture13-json/010.mp4

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

Now we’re making the request, waiting for the response, and making sure
that the response is error-free

Now we need to add a callback function that’ll do something with the data
once it has been received

First, let’s declare a callback function and put all the code we’ve got so far
into it

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

Now we can call the function with a separate function

But we need to do a little more to tie it in to the request

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

Turn it into a callback

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

Add a call to the callback to our code

We’ll call it ‘callback,’ but the name could be anything

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

Add some test code

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

Test the code

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

This is fine, as far as it goes

But notice that we get the same feedback whether the call was a success or
not

We need to add a couple of parameters to be able to distinguish between
the two

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

So we’re going to pass two parameters -> err (error) and data (data)

By convention, we call them ‘err’ and ‘data’

Now, we can modify the code above to differentiate between success and
failure

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

If the call is successful, the ‘err’ parameter will be undefined and we can
pass the data back

If it is not successful, we can pass an error message back while the data
parameter is undefined

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

Now, we can modify the callback to handle either condition

If we load this into the browser (without the ‘Intentional error’):

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

NO ERROR

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

ERROR OCCURRED

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

https://csci1720.net/lecture/video/lecture13-json/011.mp4

https://csci1720.net/lecture/video/lecture13-json/012.mp4

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

So now we’ve got the data back from the request without blocking the
code

So, what do we do with it?

How can we manipulate the data once it has been returned?

The data is returned as text, but we need to convert it to something we can
use

Enter JSON

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

https://csci1720.net/lecture/video/lecture13-json/012.mp4

https://csci1720.net/lecture/video/lecture13-json/013.mp4

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

JSON.parse() will convert a properly formatted text string into an array of
JSON objects

We can then access that array and process the data however our
application requires

We could use a local JSON file for our data:

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

https://csci1720.net/lecture/video/lecture13-json/013.mp4

https://csci1720.net/lecture/video/lecture13-json/012.mp4

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

Naturally, there are more issues with asynchronous requests…

What if we want to do multiple requests against (possibly) multiple
endpoints

A typical use-case is getting data from one endpoint, doing something
with it, then another endpoint, doing something, and so on

But for now, that’s the basics of performing an asynchronous call in
JavaScript

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

You may be asking yourself at this point, “So what?”

We requested the data

We did some basic error checking

We got the data back

We logged it to the console

But, all “oohs” and “ahhs” aside, what next?

Well, here’s one example

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

XMLHttpRequest

https://csci1720.net/lecture/video/lecture13-json/014.mp4

https://csci1720.net/lecture/video/lecture13-json/014.mp4

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

East Tennessee State University
Department of Computing

CSCI 1720
Intermediate Web Design

•Microsoft, Windows, Excel, Outlook, and PowerPoint are registered trademarks of Microsoft Corporation.

•IBM, DB2, DB2 Universal Database, System i, System i5, System p, System p5, System x, System z, System z10, System z9, z10, z9, iSeries, pSeries, xSeries, zSeries, eServer, z/VM,
z/OS, i5/OS, S/390, OS/390, OS/400, AS/400, S/390 Parallel Enterprise Server, PowerVM, Power Architecture, POWER6+, POWER6, POWER5+, POWER5, POWER, OpenPower,
PowerPC, BatchPipes, BladeCenter, System Storage, GPFS, HACMP, RETAIN, DB2 Connect, RACF, Redbooks, OS/2, Parallel Sysplex, MVS/ESA, AIX, Intelligent Miner, WebSphere,
Netfinity, Tivoli and Informix are trademarks or registered trademarks of IBM Corporation.

•Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

•Oracle is a registered trademark of Oracle Corporation.

•HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C®, World Wide Web Consortium, Massachusetts Institute of Technology.

•Java is a registered trademark of Sun Microsystems, Inc.

•JavaScript is a registered trademark of Sun Microsystems, Inc., used under license for technology invented and implemented by Netscape.

•SAP, R/3, SAP NetWeaver, Duet, PartnerEdge, ByDesign, SAP Business ByDesign, and other SAP products and services mentioned herein as well as their respective logos are
trademarks or registered trademarks of SAP AG in Germany and other countries.

•Business Objects and the Business Objects logo, BusinessObjects, Crystal Reports, Crystal Decisions, Web Intelligence, Xcelsius, and other Business Objects products and services
mentioned herein as well as their respective logos are trademarks or registered trademarks of Business Objects S.A. in the United States and in other countries. Business Objects is an
SAP company.

•ERPsim is a registered copyright of ERPsim Labs, HEC Montreal.

•Other products mentioned in this presentation are trademarks of their respective owners.

Copyrights
Presentation prepared by and copyright of John Ramsey,

East Tennessee State University, Department of
Computing . (ramseyjw@etsu.edu)

mailto:pittares@etsu.edu

	Slide 1
	Slide 2
	Slide 3: JS Objects
	Slide 4: JS Objects
	Slide 5: JS Objects
	Slide 6: JS Objects
	Slide 7: JS Objects
	Slide 8: JS Objects
	Slide 9: JS Objects
	Slide 10: JS Objects
	Slide 11: JS Objects
	Slide 12: JS Objects
	Slide 13: JS Objects
	Slide 14: JS Objects
	Slide 15: JS Objects
	Slide 16: JS Objects
	Slide 17
	Slide 18: eXtensible Markup Language
	Slide 19: XML
	Slide 20: eXtensible Markup Language
	Slide 21
	Slide 22: JavaScript Object Notation
	Slide 23: JavaScript Object Notation
	Slide 24: JavaScript Object Notation
	Slide 25: JavaScript Object Notation
	Slide 26: JavaScript Object Notation
	Slide 27: Example
	Slide 28: JavaScript Object Notation
	Slide 29: JavaScript Object Notation
	Slide 30: JavaScript Object Notation
	Slide 31: JavaScript Object Notation
	Slide 32: JSON Conclusion
	Slide 33: Asynchronous JS
	Slide 34: Synchronous JS
	Slide 35: Synchronous JS
	Slide 36: Synchronous JS
	Slide 37: Synchronous JS
	Slide 38: Synchronous JS
	Slide 39: Asynchronous JS
	Slide 40: Synchronous JS
	Slide 41: Synchronous JS
	Slide 42: Asynchronous JS
	Slide 43: HTTP Requests
	Slide 44: API Endpoints
	Slide 45: XMLHttpRequest
	Slide 46: XMLHttpRequest
	Slide 47: XMLHttpRequest
	Slide 48: XMLHttpRequest
	Slide 49: XMLHttpRequest
	Slide 50: XMLHttpRequest
	Slide 51: XMLHttpRequest
	Slide 52: XMLHttpRequest
	Slide 53: XMLHttpRequest
	Slide 54: XMLHttpRequest
	Slide 55: XMLHttpRequest
	Slide 56: XMLHttpRequest
	Slide 57: XMLHttpRequest
	Slide 58: XMLHttpRequest
	Slide 59: XMLHttpRequest
	Slide 60: XMLHttpRequest
	Slide 61: XMLHttpRequest
	Slide 62: XMLHttpRequest
	Slide 63: XMLHttpRequest
	Slide 64: XMLHttpRequest
	Slide 65: XMLHttpRequest
	Slide 66: XMLHttpRequest
	Slide 67: XMLHttpRequest
	Slide 68: XMLHttpRequest
	Slide 69: XMLHttpRequest
	Slide 70: XMLHttpRequest
	Slide 71: XMLHttpRequest
	Slide 72: XMLHttpRequest
	Slide 73: XMLHttpRequest
	Slide 74: XMLHttpRequest
	Slide 75: XMLHttpRequest
	Slide 76: XMLHttpRequest
	Slide 77: XMLHttpRequest
	Slide 78: XMLHttpRequest
	Slide 79: XMLHttpRequest
	Slide 80
	Slide 81

